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Abstract

We devise minimalistic gauged U(1)X Froggatt-Nielsen models which at low-energy
give rise to the recently suggested discrete gauge Z6-symmetry, proton hexality, thus
stabilizing the proton. Assuming three generations of right-handed neutrinos, with
the proper choice of X-charges, we obtain viable neutrino masses. Furthermore,
we find scenarios such that no X-charged hidden sector superfields are needed,
which from a bottom-up perspective allows the calculation of gstring, gX and GSM’s
Kač-Moody levels. The only mass scale apart from Mgrav is msoft.
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1 Introduction

In this paper, we consider low-energy discrete symmetries, ZN , as extensions of the

SU(3)×SU(2)×U(1) gauge symmetry of the Minimal Supersymmetric Standard Model

(MSSM). We focus on the case, where the ZN is the remnant of a spontaneously broken

local gauge symmetry, in order to avoid potentially harmful gravity effects [1]. Such

discrete symmetries originating in a gauge theory are called discrete gauge symmetries

(DGSs) [2]. In Refs. [3, 4], a systematic study was performed of all the DGSs resulting

from Abelian, anomaly-free gauge symmetries, U(1)X , which leave the MSSM invariant.

Specifically, the following assumptions were made in these studies1

• The only light, low-energy fields are those of the MSSM. All beyond-the-MSSM

fields are heavy.

• At least the following superpotential terms are ZN -invariant:

QiHDDj, QiHUU j , LiHDEj , HDHU , LiHULjHU , (1.1)

where we have made use of the standard notation for the MSSM chiral superfields,

see for example [6]. The invariance of the first three terms implies that the ZN -

symmetry, but not necessarily the original U(1)X , is family-universal.

Given these assumptions, the only possible DGS resulting from an anomaly-free U(1)X

are the Z2-symmetry matter parity (Mp), the Z3-symmetry baryon triality (B3) and theZ6-symmetry proton hexality (P6 = Mp × B3) [3, 4]. In Refs. [7, 8], the U(1)X gauge

charges were determined, which lead to a low-energy Mp, B3, or P6, respectively. See

also Refs. [9, 10] for related work on the conditions for DGSs in GUTs.

It is now of great interest to see whether realistic flavor models for the Standard

Model (SM) fermion masses and mixings can be constructed in each case. Employing the

original U(1)X in a minimal Froggatt-Nielsen (FN) scenario [11] and using the Green-

Schwarz (GS) mechanism [12] to cancel the U(1)X anomalies, a successful Mp-model was

constructed in Ref. [7] and its implications for suppressed proton decay were discussed

in Refs. [13, 14]. Later, a corresponding B3-model was constructed in Ref. [8], with a

detailed discussion of the neutrino masses.

It is the purpose of this note to construct a P6-FN flavor model, in order to complete

this program. Furthermore, from the phenomenological point of view, proton hexality is

a very attractive symmetry. It combines the advantages of the Mp and the B3 models [4]:

the lightest supersymmetric particle (LSP) is stable and the dangerous dimension-four

and dimension-five proton decay operators are forbidden. We shall proceed analogously

to Refs. [7, 8] and refer the reader to these publications for an explanation of our no-

tation and an introduction to for example the Giudice-Masiero/Kim-Nilles (GM/KN)

mechanism [15, 16].

There has been extensive previous work on anomalous flavor models employing the

Green-Schwarz mechanism and with breaking slightly below the Planck scale, see for

1In Ref. [5], the case will be investigated where these points are modified such that massless right-
handed neutrinos exist, hence the possible DGSs in combination with Dirac rather than Majorana
neutrinos will be explored.
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example Refs. [17, 18, 19, 20, 21, 22]. However, we believe this is the first work on such

a model aiming for a remnant “gauged” P6. There are also some non-anomalous flavor

models with U(1)X breaking at the TeV scale [23, 24, 25, 26, 27, 28, 29].

This note is structured as follows: In Sect. 2, we discuss the constraints on the X-

charges which are not related to neutrino phenomenology. In Sect. 3, we then focus on

the neutrino sector and how it fixes the X-charges; corresponding tables are given in

Appendix B. In Sect. 4, we discuss the possibility and the implications of excluding X-

charged hidden sector superfields, enabling us to calculate the string coupling constant.

We conclude in Sect. 5.

2 Non-Neutrino Constraints on the X-Charges

In the following we proceed as in Refs. [7, 8] and consider only one flavon chiral superfield

A, with U(1)X-charge XA = −1. In order to obtain a viable flavor model, the U(1)X

charges of the P6–FN models must satisfy several phenomenological and consistency

constraints. They must

(a) reproduce phenomenologically acceptable charged SM fermion masses and mixings,

see Ref. [30],

(b) reproduce phenomenologically acceptable neutrino masses and mixings,

(c) satisfy the Green-Schwarz mixed linear anomaly cancellation conditions (with gauge

coupling unification), as well as guarantee that the mixed quadratic anomaly van-

ishes on its own, e.g. Ref. [7],

(d) imply the desired low-energy DGS P6, i.e. give rise to the following discrete family-

independent Z6-charges for the MSSM chiral superfields [4, 31]:

zQ = 0, zD = 5, zU = 1, zL = 4, zE = 1, zHD = 1, zHU = 5 ,

and (as will be argued later) zN = 3 for the additional right-handed neutrino (SM

singlet) chiral superfields.

Excluding the conditions (b) and (d) for a moment, it was shown in Table 1 of Ref. [7]

that all 20 X-charges of the MSSM+N i superfields can be expressed in terms of nine

real numbers. Note that for simplicity, we assume three generations of right-handed

neutrinos, unlike in Ref. [7] where only two generations were introduced.

x = 0, 1, 2, 3, XL1 , XN1,
y = −1, 0, 1, ∆L

21 ≡ XL2 − XL1 , XN2,
z = 0, 1, ∆L

31 ≡ XL3 − XL1 , XN3,
(2.1)

Here XF denotes the U(1)X -charge of the field F . A few comments are in order:

• ∆L
31 and ∆L

21 can only take integer values.

• x is related to the ratio of the vacuum expectation values (VEVs) of the two Higgs

doublets, tanβ = υu

υd
, by ǫx ∼ mb

mt
tanβ.
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• y parameterizes the phenomenologically viable ǫ-structures for the CKM matrix.

Our preferred choice is y = 0 as it gives a CKM matrix with UCKM
12 ∼ ǫ, UCKM

13 ∼ ǫ3,

and UCKM
23 ∼ ǫ2, see Ref. [7].

• z is related to the ratio me/mµ. It turns out to equal −XHU −XHD and thus deals

with the origin and the magnitude of the µ-parameter. For z = 1, the bilinear Higgs

term is forbidden before U(1)X -breaking. After U(1)X -breaking it is generated

via the combination of the FN-mechanism together with the GM/KN-mechanism,

resulting in a µ-parameter of the order of the soft supersymmetry breaking scale

msoft. So the µ-problem finds a natural solution, unlike in the case for z = 0; we

will hence assume z = 1 throughout this article.

• The X-charges of the first generation lepton doublet L1 and the three right-handed

neutrinos are unconstrained at this stage. We will explain in a moment why the

right-handed neutrinos have to be introduced at all.

• Assuming a string-embedded FN framework, the expansion parameter ǫ is a derived

quantity which depends on x and z. For z = 1 and x = 0, 1, 2, 3 we get ǫ within

the interval (see Ref. [7] and references therein for details)

0.186 ≤ ǫ ≤ 0.222 . (2.2)

Let us now include (d), i.e. the constraints arising from the requirement of a low-

energy DGS P6. The necessary and sufficient conditions on the X-charges for obtaining

P6 conservation are derived in Ref. [8]. With p = ±1 they are

XHD − XL1 = −1

2
+ integer, 3XQ1 + XL1 = −p

3
+ integer, (2.3)

as well as (see the argument in Item 3 in Sect. 3.1) the three X-charges of the right-

handed neutrinos being half-odd-integer. Inserting the expression for XQ1 of Table 1 in

Ref. [7], we can rewrite this as

∆H ≡ XL1 − XHD − 1

2
, 3ζ + p ≡ ∆L

21 + ∆L
31 − z, (2.4)

where ∆H , ζ ∈ Z. We thus impose proton hexality by trading the parameters XL1 and

∆L
21 of Eq. (2.1) for the integer parameters ∆H and 3ζ + p. The resulting constrained

X-charges are shown in Table 1.

3 Neutrino Constraints on the X-Charges

3.1 The Origin of P6 Neutrino Masses

Next we take the remaining constraints (b) into account, i.e. the experimental data from

the neutrino sector. To do so, let us first consider the possible sources of neutrino masses

in a P6 invariant FN scenario.
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XHD = 1
5 (6+x+z)

(
6y + x (2x + 11 + z − 2∆H)

−z (11
2

+ 3∆H) − 2 (6 + 6∆H − ∆L
31) − 2

3
(6 + x + z)(3ζ + p)

)

XHU = −z − XHD

XQ1 = 1
3

(
19
2
− XHD + x + 2y + z − ∆H − 1

3
(3ζ + p)

)

XQ2 = XQ1 − 1 − y

XQ3 = XQ1 − 3 − y

XU1 = XHD − XQ1 + 8 + z

XU2 = XU1 − 3 + y

XU3 = XU1 − 5 + y

XD1 = −XHD − XQ1 + 4 + x

XD2 = XD1 − 1 + y

XD3 = XD1 − 1 + y

XL1 = XHD + ∆H + 1
2

XL2 = XL1 − ∆L
31 + z + (3ζ + p)

XL3 = XL1 + ∆L
31

XE1 = −XHD+ 4 − XL1 + x + z

XE2 = XE1 − 2 − 2z + ∆L
31 − (3ζ + p)

XE3 = XE1 − 4 − z − ∆L
31

XN1 = 1
2

+ ∆N
1

XN2 = 1
2

+ ∆N
2

XN3 = 1
2

+ ∆N
3

Table 1: The constrained X-charges which lead to an acceptable low-energy phenomenology of
quark and charged lepton masses and quark mixing. In addition, the GS anomaly cancellation
conditions have been implemented as well as the quadratic anomaly condition. Furthermore, P6

is conserved, i.e. Eq. (2.4) has been imposed. x, y, z and p are integers specified in Eqs. (2.1,2.4).

∆H , ∆L
31, and ζ are integers as well but still unconstrained. The ∆N

i of the right-handed
neutrinos are yet-unspecified integers.

1. Neutrino masses cannot derive from matter parity (Mp) violating operators such

as LHU or LLE, as these are forbidden by P6.

2. Therefore, and in the lack of right-handed neutrinos, (Majorana) neutrino masses

can only originate from the dimension five superpotential term LiHULjHU . As-
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suming a minimal number of fundamental mass scales, i.e. only msoft ≈ 0.1 − 1 TeV

and Mgrav = 2.4 · 1018 GeV, this operator is suppressed by 1
Mgrav

. This results in the

following neutrino mass matrix

[
M

(ν)

LHULHU

]
ij

∼ 〈HU〉2
Mgrav

· ǫX
Li+X

Lj +2X
HU . (3.1)

Since XLi + XLj + 2XHU ≥ 0 and ǫ ≈ 0.2, the absolute neutrino mass scale cannot

exceed 〈HU 〉2
Mgrav

≈ 1.3 · 10−5eV in this scenario (with 〈HU〉 ∼ mt). From the observed

atmospheric neutrino oscillations, we however know that the absolute mass scale

must be at least 5·10−2eV. Thus the neutrino mass matrix cannot (solely) originate

from the non-renormalizable operator LiHULjHU . This is not the case if we allow

for the mass scale which suppresses LiHULjHU to be lower than Mgrav, see e.g. the

model in Ref. [4]. Note that in the case where XLi +XLj +2XHU < 0, the operator

LiHULjHU is generated from the Kähler potential via the GM/KN-mechanism in

combination with the FN-mechanism, leading to an even stronger suppression by a

factor of msoft

M2
grav

.

3. When enlarging the particle spectrum by three generations of right-handed neu-

trinos N i, i.e. particles which couple trilinearly to LiHU , a new possibility for the

neutrino mass term arises. Since LiHULjHU is P6-allowed and the term LiHUN j

by definition as well, but LiHU is P6-forbidden, the right-handed neutrinos must

carry a half-odd-integer X-charge. Thus the Majorana mass term N iN j is neces-

sarily also P6-allowed. In Ref. [5], the possibility of DGSs which allow for LiHUN j

but forbid N iN j and LiHULjHU will be discussed.

Throughout this article, we consider the third possibility above as the only viable

source of neutrino masses in our scenario. The flavon field A and the right-handed

neutrinos N i have a lot in common. Apart from their U(1)X -charges, both are uncharged.

But there are also certain important differences: 1.) After U(1)X breaking A will not

carry any Z-charge, whereas the N i will. 2.) The flavon field A acquires a VEV, whereas

the N i are assumed not to. This is just like the MSSM non-Higgs scalar fields, which are

not supposed to acquire a VEV, in order to e.g. preserve color and/or electromagnetism.

Note that 〈A〉 = ǫMgrav, but 〈N i〉 = 0 is consistent with the requirement of SUSY being

unbroken at ǫMgrav, i.e. 〈DX〉 = 〈FA〉 = 〈FN i〉 = 0.

In the discussion of the constraints on the X-charges coming from the neutrino sector,

we have to distinguish between four cases. These differ in the origin of the superpotential

terms LiHUN j and N iN j . Depending on the overall X-charge, the terms are either of

pure FN origin or effectively generated via the GM/KN-mechanism in combination with

the FN-mechanism. For the Majorana mass terms, the low-energy effective superpotential

6



terms are2

XN i + XNj ≥ 0 :
1

2
M

(M)
ij N iN j ∼ 1

2
Mgrav · ǫX

Ni + X
Nj · N iN j , (3.2)

XN i + XNj < 0 :
1

2
M

(M)
ij N iN j ∼ 1

2
msoft · ǫ−X

Ni −X
Nj · N iN j , (3.3)

while for the Dirac mass terms we have

XLi + XHU + XNj ≥ 0 :
M

(D)
ij

〈HU〉 LiHUN j ∼ ǫX
Li +X

HU + X
Nj · LiHUN j , (3.4)

XLi + XHU + XNj < 0 :
M

(D)
ij

〈HU〉 LiHUN j ∼ msoft

Mgrav
· ǫ−X

Li −X
HU −X

Nj · LiHUN j . (3.5)

The labeling of the four different cases is shown in the following table.

XN i + XNj ≥ 0 XN i + XNj < 0

XLi + XHU + XNj ≥ 0 I II

XLi + XHU + XNj < 0 III IV

(This can be compared also to Table 5 of Ref. [7]: Case I contains their 1.+2., Case II 6.,

Case III 3. and Case IV 4.+5.)

When determining the masses of the light neutrino degrees of freedom we have to

diagonalize the 6 × 6 neutrino mass matrix

(
0 M

(D)

M
(D)T

M
(M)

)
. (3.6)

We have approximated the (1, 1) entry of the matrix above to be the 3 × 3 zero matrix,

because we already concluded earlier [see below Eq. (3.1)] that M
(ν)

LHU LHU does not

contribute substantially enough to the absolute neutrino masses.

Under the assumption that the ǫ-suppression is not able to compensate the gravita-

tional scale Mgrav such that one arrives at msoft or 〈HU〉 (which would be ∼ 24 powers

of ǫ), we see from Eqs. (3.2-3.5) that automatically M
(D) ≪ M

(M) for the Cases I, III

and IV. We can thus directly apply the see-saw formula to calculate the masses of the

three light neutrinos. In Case II, there are three possibilities

(i) M
(D) ≪ M

(M) −→ standard see-saw,

(ii) M
(D) ≈ M

(M),

(iii) M
(D) ≫ M

(M) −→ pseudo Dirac neutrinos.

2We assume that all entries of the 3 × 3 mass matrices have the same origin: Either they are all
generated by pure FN or all via GM/KN+FN. Allowing otherwise would lead to enormous suppressions
between some of the elements of the mass matrices, effectively leading to textures, which for simplicity
we prefer to avoid.

7



For Case (II.iii), the ǫ-suppression must lower 〈HU〉 ∼ 200 GeV down to the neutrino

mass scale, in order to be phenomenologically viable. This corresponds to about 20 powers

of ǫ and we do not consider it any further. In Case (II.ii) one would naturally, i.e. without

finetuning among the submatrices M
(D) and M

(M), expect the neutrino mass matrix to

have six singular values (masses) of the same order; as for (II.iii), extreme ǫ-suppression

is required to obtain three sub-eV neutrinos. Hence, we also discard Case (II.ii). For the

rest of this article, we refer to Case (II.i) as Case II.

Regardless of the Case (I - IV), in the following the light neutrino mass matrix is

derived from the see-saw mechanism [32, 33, 34, 35] and is given as (discarding the

contributions from LiHULjHU)

M
(ν) = −M

(D) · M (M)−1 · M (D)T
. (3.7)

For later convenience we change the basis of the right-handed neutrinos so that M
(M)

is diagonal. Such a basis transformation is unproblematic after U(1)X is broken. As

discussed in Ref. [8], this basis transformation does not alter the ǫ-structure of M
(D)

in Eqs. (3.4) and (3.5). It is now straightforward to determine M
(ν) for the upper four

cases:

M
(ν,I)
ij ∼ 〈HU〉2

Mgrav

ǫ2∆H − 2z + 1+ ∆L
i1 + ∆L

j1, (3.8)

M
(ν,II)
ij ∼ 〈HU〉2

msoft
ǫ2∆H − 2z + 1+ ∆L

i1 + ∆L
j1 ×

3∑

a=1

ǫ4X
Na , (3.9)

M
(ν,III)
ij ∼ 〈HU〉2 m2

soft

M3
grav

ǫ− 2∆H +2z − 1−∆L
i1 −∆L

j1 ×
3∑

a=1

ǫ− 4X
Na , (3.10)

M
(ν,IV)
ij ∼ 〈HU〉2 msoft

M2
grav

ǫ− 2∆H +2z − 1−∆L
i1 −∆L

j1 . (3.11)

Here we have made use of Table 1 and the definition ∆L
i1 ≡ XLi − XL1 . Note that the

dependence on the X-charges of the right-handed neutrinos drops out in Cases I and IV,

as has been shown analytically in Ref. [7]. Thus the masses of the light neutrinos do not

depend on the charges XNa . For Cases II and III one might näıvely expect that although

the overall mass scale of the light neutrinos depends on the XNa , their mass ratios

m̃3 : m̃2 : m̃1 do not. The latter however is not true, as is shown explicitly for Case II in

Appendix A. Making use of the orderings3 XL3 ≤ XL2 ≤ XL1 and XN3 ≤ XN2 ≤ XN1 ,

we obtain

m̃3 : m̃2 : m̃1 ∼ 1 : ǫ2(X
L2−X

L3 )+4(X
N2−X

N3 ) : ǫ2(X
L1−X

L3 )+4(X
N1−X

N3 ). (3.12)

Assuming XN2 − XN3 ≥ 1, the second largest neutrino mass would be suppressed by a

factor of at least ǫ4 compared to the heaviest neutrino. Even when including the effects of

unknown O(1) coefficients, this suppression is too large to be consistent with the data (see

3The ordering of XLi is necessary for obtaining a phenomenologically acceptable charged lepton mass
matrix (see the discussion in Ref. [8]), while we are free to choose the ordering of X

Ni without loss of
generality.
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Sect. 3.3). For Case II, we must therefore constrain the X-charges of the right-handed

neutrinos by

XN2 = XN3 , (3.13)

XN1 = XN2 = XN3 , (3.14)

for (normal and inverted) hierarchy and degeneracy, respectively (see Sect. 3.3).

Similarly for Case III: Here one obtains the condition XN1 = XN2 for (normal and

inverted) hierarchical light neutrinos, and XN1 = XN2 = XN3 for degenerate scenarios.

3.2 Constraints from Neutrino Mixing

The ǫ-structure of the light neutrino mass matrix is determined by ∆L
21 and ∆L

31. We have

M
(ν)
ij ∝ ǫX

Li+X
Lj for Cases I & II whereas for Cases III & IV we find M

(ν)
ij ∝ ǫ−X

Li−X
Lj .

Both types of matrices are diagonalized by a unitary transformation Ũ
(ν)
ij ∼ ǫ|XLi−X

Lj |,

so that

Ũ
(ν)∗ · M (ν) · Ũ (ν)† =




m̃1 0 0
0 m̃2 0
0 0 m̃3


 , (3.15)

with

Case I : m̃1 : m̃2 : m̃3 ∼ 1 : ǫ2∆L
21 : ǫ2∆L

31 , (3.16)

Case II : m̃1 : m̃2 : m̃3 ∼ 1 : ǫ2∆L
21+4(X

N2−X
N1 ) : ǫ2∆L

31+4(X
N3−X

N1 ) , (3.17)

Case III : m̃1 : m̃2 : m̃3 ∼ 1 : ǫ−2∆L
21−4(X

N2−X
N1 ) : ǫ−2∆L

31−4(X
N3−X

N1 ) , (3.18)

Case IV : m̃1 : m̃2 : m̃3 ∼ 1 : ǫ−2∆L
21 : ǫ−2∆L

31 . (3.19)

As mentioned above and discussed in greater detail in Appendix A, the ratios of the

light neutrino masses depend on the X-charges of the right-handed neutrinos in Cases II

and III [see Eqs. (A.16) and (A.17)]. Recalling the orderings XL3 ≤ XL2 ≤ XL1 and

XN3 ≤ XN2 ≤ XN1 we find

Cases I & II : m̃1 ≤ m̃2 ≤ m̃3 , Cases III & IV : m̃1 ≥ m̃2 ≥ m̃3 , (3.20)

respectively. In order to compare the theoretically derived mixing matrices Ũ
(ν) with

neutrino phenomenology, it is convenient to define the matrix U
(ν) ≡ U

MNS †
, so that

U
(ν)∗ · M (ν) · U (ν)† =




m1 0 0
0 m2 0
0 0 m3



 . (3.21)

Here m1 ≤ m2 ≤ m3 for normal and m3 ≤ m1 ≤ m2 for inverted ordering of the neutrino

masses, see e.g. Ref. [36]. U
MNS is the Maki-Nakagawa-Sakata matrix [37] for mixing

in the lepton sector. Working in a basis with diagonal charged leptons, cf. Ref. [8],

this mixing is solely due to the neutrino sector. Comparing Eqs. (3.15, 3.21), we can

easily determine the relation between U
(ν) and Ũ

(ν) and thus the theoretically predicted

structure of the MNS matrix for the various scenarios:

9



• Considering the Cases I & II and a normal neutrino mass ordering, we simply have

U
(ν) = T123 · Ũ (ν), with T123 ≡




1 0 0
0 1 0
0 0 1


 , (3.22)

• while an inverted mass ordering leads to

U
(ν) = T231 · Ũ (ν), with T231 ≡




0 1 0
0 0 1
1 0 0


 . (3.23)

• For Cases III & IV, we similarly find that for a normal neutrino mass ordering

U
(ν) = T321 · Ũ (ν), with T321 ≡




0 0 1
0 1 0
1 0 0


 , (3.24)

• and for an inverted mass ordering

U
(ν) = T213 · Ũ (ν), with T213 ≡




0 1 0
1 0 0
0 0 1



 . (3.25)

Since U
MNS †

= U
(ν) = T... · Ũ (ν), with Ũ

(ν)
ij ∼ ǫ|XLi−X

Lj |, we obtain severe constraints

on the possible values for ∆L
i1 from the experimentally allowed ǫ-structure of the MNS

matrix [8]

U
MNS ∼




ǫ0,1 ǫ0,1 ǫ0,1,2,...

ǫ0,1,2 ǫ0,1 ǫ0,1

ǫ0,1,2 ǫ0,1 ǫ0,1


 . (3.26)

Here, multiple possibilities for the exponents of ǫ are separated by commas. Depending

on T... we have four different equations for

ǫ|XLi−X
Lj | ∼ Ũ

(ν)
ij =

[
T...

† · UMNS †
]

ij
. (3.27)

The resulting ǫ-structures of Ũ
(ν) are shown in Table 2 together with the compatible

values for the pairs (∆L
21, ∆

L
31). Notice that due to the ordering XL3 ≤ XL2 ≤ XL1 , we

must have ∆L
i1 ≤ 0 as well as ∆L

21 ≥ ∆L
31.

Having derived the constraints on the parameters ∆L
i1 from neutrino mixing, we must

also satisfy the second condition of Eq. (2.4), which states that ∆L
21 + ∆L

31 − z must not

be a multiple of three. As mentioned earlier, we choose to work with z = 1 in order

to have the µ-term generated by the GM/KN+FN-mechanism. Therefore the choice

(∆L
21, ∆

L
31) = (−1,−1) is incompatible with the requirement of P6 conservation, and in

the remainder of this article we – of course – do not consider this P6 violating solution.

We conclude the discussion of the neutrino mixing with some observations regarding

the CHOOZ [38] mixing angle, θ13. In our notation this angle is parameterized by the

10



Cases I & II Cases III & IV

normal mass ordering




ǫ0,1 ǫ0,1,2 ǫ0,1,2

ǫ0,1 ǫ0,1 ǫ0,1

ǫ0,1,2,... ǫ0,1 ǫ0,1







ǫ0,1,2,... ǫ0,1 ǫ0,1

ǫ0,1 ǫ0,1 ǫ0,1

ǫ0,1 ǫ0,1,2 ǫ0,1,2




(∆L
21, ∆

L
31) (0, 0), (0,−1), (−1,−2), (0, 0), (0,−1),

(−1,−1) (−1,−1)

inverted mass ordering




ǫ0,1,2,... ǫ0,1 ǫ0,1

ǫ0,1 ǫ0,1,2 ǫ0,1,2

ǫ0,1 ǫ0,1 ǫ0,1








ǫ0,1 ǫ0,1 ǫ0,1

ǫ0,1 ǫ0,1,2 ǫ0,1,2

ǫ0,1,2,... ǫ0,1 ǫ0,1





(∆L
21, ∆

L
31) (0, 0), (0,−1), (0, 0), (0,−1),

(−1,−1) (−1,−1)

Table 2: The constraints on the values of ∆L
i1 originating from the experimentally observed

neutrino mixing. The structure of the matrix Ũ
(ν) = T...

† · U
MNS †

is shown. As also
Ũ

(ν)
ij ∼ ǫ|XLi−X

Lj | must be satisfied, only a few pairs of (∆L
21, ∆

L
31) are possible. Demanding

P6 invariance, the choice (−1,−1) is excluded, see below Eq. (3.27).

entry ǫ0,1,2,... in the mixing matrices Ũ
(ν) of Table 2. As the CHOOZ angle is small, one

should try to find solutions in terms of (∆L
21 , ∆L

31) where this entry is ǫ1 or ǫ2.

Comparing with the four matrices in Table 2, we see that a normal mass ordering

with (0,−1) or (−1,−2) is preferred for Cases I & II, while inverted neutrino masses

with (0,−1) are suggested for Cases III & IV. More precisely, (0,−1) leads to UMNS
13 ∼ ǫ

for normal ordered Cases I & II and inverted ordered Cases III & IV, while (−1,−2)

analogously results in UMNS
13 ∼ ǫ2. By choosing ∆L

31 appropriately, one can understand

the smallness of the CHOOZ angle in terms of the flavor group U(1)X .

There exist of course other possible explanations for the smallness of θ13. For example,

in Ref. [39] this is achieved by separating the effective neutrino mass matrix as a sum of

two parts; each contains only a 2 × 2 block and is of rank one. Alternatively, there is a

plethora of models adopting non-Abelian discrete symmetries like e.g. A4 [40, 41, 42, 43],

∆(27) [44, 45], S3 [46, 47], S4 [48, 49], Z7 ⋊ Z3 [50], PSL2(7) [51] to give rise to the tri-

bimaximal mixing pattern [52], in which θ13 is exactly zero.

3.3 Constraints from Neutrino Masses

Before discussing the Cases I - IV individually, some general remarks concerning the

magnitude of the three light neutrino masses are in order. We shall combine the results

of the solar [53, 54], atmospheric [55], reactor [56], and accelerator [57] neutrino oscillation
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experiments,4 as well as the upper bound on the absolute neutrino mass scale originating

from the kinematic mass measurements [60]. This leads to three possible scenarios, see

e.g. Refs. [36, 61]:

m1 < m2 ≪ m3 ≈ 0.05 eV, normal hierarchical,

m3 ≪ m1 < m2 ≈ 0.05 eV, inverted hierarchical,

0.05 eV ≪ m1 ≈ m2 ≈ m3 < 2.2 eV, degenerate.

Assuming a (normal or inverted) hierarchical scenario, the absolute upper neutrino mass

scale mν
abs ≡ max (m1, m2, m3) is about 0.05 eV, a value which is consistent with the

cosmological upper bound on the sum of the neutrino masses,
∑

i mi ≤ 0.7 eV [62, 63].

For an inverted hierarchy, two neutrinos must have a mass around this scale, while the

third neutrino is much lighter. As the suppression between the masses of the two heavier

neutrinos is given by [cf. Eqs. (3.16-3.19), respectively]

Case I :
m̃2

m̃3
∼ ǫ2(∆L

21−∆L
31) , (3.28)

Case II :
m̃2

m̃3
∼ ǫ2(∆L

21−∆L
31)+4(X

N2−X
N3 ) , (3.29)

Case III :
m̃2

m̃1

∼ ǫ−2∆L
21+4(X

N1−X
N2 ) , (3.30)

Case IV :
m̃2

m̃1

∼ ǫ−2∆L
21 , (3.31)

the inverted hierarchical scenario is not possible for all pairs (∆L
21, ∆

L
31): For Cases I & II

we need (0, 0) whereas for III & IV (0, 0) as well as (0,−1) are acceptable.

For the degenerate case, mν
abs can take values within the range [0.2 eV, 2.2 eV], where

the lower end of the interval is estimated such that it satisfies the condition 0.05 eV ≪
mν

abs. Concerning the cosmological bound, high values for the neutrino masses are more

or less disfavored, depending on which cosmological observations are included in the

derivation of the bound [62, 63]. We return to this issue in the discussion of our results.

Within our P6 FN-framework, the degenerate scenario is only possible if we have ∆L
21 =

∆L
31 = 0. This in turn requires a certain amount of finetuning among the O(1) coefficients

in order to get correct neutrino masses and mixing.

We now turn to the discussion of each of the individual Cases I - IV. In our calculations

we take Mgrav = 2.4 · 1018 GeV,

100 GeV ≤ msoft ≤ 1000 GeV, (3.32)

and 〈HU〉 ∼ mt = 175 GeV.5 In addition we assume z = 1, as well as Eq. (2.2).

4We disregard the result of the LSND experiment [58], which could not be confirmed by MiniBooNE
[59].

5Of course, one only knows
√
〈HU 〉2 + 〈HD〉2 and not 〈HU 〉 alone. However, the latter depends only

weakly on tanβ (and hence x) in the range 2 ≤ tanβ ≤ 50.
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(I) From Eq. (3.8) and the ordering ∆L
31 ≤ ∆L

21 ≤ ∆L
11 = 0, we get the absolute neutrino

mass scale as

mν
abs ∼ m2

t

Mgrav

ǫ2∆H+2∆L
31−1. (3.33)

Solving for the exponent yields

2∆H + 2∆L
31 − 1 ∼ 1

ln ǫ
· ln

(
mν

absMgrav

m2
t

)
. (3.34)

– For a normal or inverted hierarchical scenario mν
abs ≈ 0.05 eV. Inserting this

and the limiting values for ǫ, we arrive at the following allowed range

− 2∆H − 2∆L
31 ∈ [3.9 , 4.5], (3.35)

where the lower value of the interval is obtained for small values of x. Since the

left-hand side is necessarily an (even) integer, the hierarchical Case I slightly

prefers small x. However, due to possible unknown O(1) coefficients we cannot

rule out large x. Furthermore, Eq. (3.35) determines ∆H as

∆H = −2 − ∆L
31 . (3.36)

– Considering the degenerate case, which is only possible for ∆L
21 = ∆L

31 = 0, the

absolute mass scale mν
abs should be within the interval [0.2 eV , 2.2 eV]. With

this we are similarly lead to

− 2∆H ∈ [4.7 , 7], (3.37)

where the lower value corresponds to both small x and small mν
abs. Thus we

have for the degenerate neutrino scenario

∆H = −3, (3.38)

a value which is compatible with all x = 0, 1, 2, 3. x = 0 leads to a neutrino

mass scale of mν
abs ≈ 1.7 eV and x = 3 to mν

abs ≈ 0.5 eV. Taken at face

value, both are in conflict with the cosmological upper bound on the sum of

the neutrino masses. However, O(1) coefficients can alleviate this tension. In

the comment column of Table 6 we give the näıve sum of the neutrino masses

assuming all O(1) coefficients are exactly one.

All possible sets of parameters (∆L
21, ∆

L
31, 3ζ + p, ∆H , x) are summarized in Ta-

ble 3. The compatibility with the various neutrino mass scenarios is denoted by

the symbol X. Note that by virtue of Eq. (2.4), the first three parameters are not

independent of each other. As pointed out earlier, we assume z = 1. The allowed

values for y = −1, 0, 1 remain unconstrained by the neutrino sector. Altogether we

can find 4 × 4 × 3 = 48 distinct sets of X-charge assignments (including also less

favored possibilities), which fulfill the constraints of Tables 1+3. They are given in

Appendix B, Table 5.
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∆L
21 ∆L

31 3ζ + p ∆H x normal hier. inverted hier. degenerate

0 0 −1 −3 0, 1, 2, 3 X

0 0 −1 −2 0, 1, (2, 3) X X

0 −1 −2 −1 0, 1, (2, 3) X

− 1 −2 −4 0 0, 1, (2, 3) X

Table 3: The sets of parameters which are compatible with neutrino phenomenology in
Case I, where the terms LiHUN j and N iN j have pure FN origin. We assume z = 1.
The hierarchical scenarios slightly prefer small x and disfavor large (denoted by the
parentheses). The parameter y = −1, 0, 1 remains unconstrained.

For Case I, the X-charges of the right-handed neutrinos are not directly constrained

by neutrino phenomenology. Recall however that this case requires by definition

XLi + XHU + XNj ≥ 0 and XN i + XNj ≥ 0 for all i, j = 1, 2, 3. With Table 1 and

z = 1 this translates into

∆N
i ≥ −∆L

31 − ∆H , (3.39)

leading to ∆N
i ≥ 3 in the degenerate case and ∆N

i ≥ 2 for hierarchical scenarios.

On the other hand, there exists also an upper bound on ∆N
i . Qualitatively, very

high X-charge for the right-handed neutrinos would suppress the Majorana mass

matrix in Eq. (3.2) so that its mass scale becomes comparable to or even smaller

than the Dirac masses of Eq. (3.4). Thus the see-saw formula would no longer

apply. Requiring that M
(D)
33 ≪ M

(M)
11 yields the condition

2∆N
1 − ∆N

3 <
1

ln ǫ
· ln

( 〈HU〉
Mgrav

)
− z + ∆L

31 + ∆H . (3.40)

Depending on ǫ, the first term on the right-hand side is numerically between 22.1

and 24.7. With the latter, i.e. for the case where ǫ = 0.222, we arrive at the

upper bounds of 2∆N
1 − ∆N

3 ≤ 20 for the degenerate and 2∆N
1 − ∆N

3 ≤ 21 for the

hierarchical case, respectively. In Sect. 4, we will constrain the ∆N
i by requiring

the absence of X-charged hidden sector superfields.

It is worth noting that thermal leptogenesis requires the lightest right-handed neu-

trino to be not too light: M
(M)
11 & 4 × 108 GeV if the spectrum is hierarchical (no

close states) but otherwise with rather conservative assumptions [64]. Even though

the considerations here do not determine the X-charges of N i, and hence their

masses, we do obtain quite restrictive constraints once we require that all anoma-

lies are canceled without introducing additional (hidden) fields charged only under

U(1)X but not the standard model. See Appendix B for more details.

(II) Proceeding with Case II, we obtain from Eq. (3.9) and the orderings ∆L
31 ≤ ∆L

21 ≤

14



∆L
11 = 0 and XN3 ≤ XN2 ≤ XN1 that

mν
abs ∼ m2

t

msoft

ǫ2∆H+2∆L
31−1+4X

N3 . (3.41)

The hierarchical scenarios require

2∆H + 2∆L
31 + 4XN3 ∈ [17.1 , 20.6], (3.42)

the left boundary of the interval corresponds to small ǫ [see Eq. (2.2)] and large

msoft [see Eq. (3.32)]. Thus ∆H is given by

∆H = −∆L
31 − 2XN3 +

{
9, x = 0, 1, (2) ,
10, x = 2, 3 .

(3.43)

Here and in the following, values in parentheses are acceptable only if we rely on

suitable O(1) coefficients to satisfy phenomenological conditions similar to Eq. (3.42)

with the above specified parameter ranges. For instance, without any O(1) coeffi-

cients in Eq. (3.41), the value x = (2) leads to msoft = 1990 GeV which is outside

of the initially assumed range for the soft supersymmetry breaking scale.

The three possible values of x in the first line of Eq. (3.43) yield msoft ≈ 230 GeV,

msoft ≈ 680 GeV, and msoft ≈ 1990 GeV, respectively. For the second line, we

find analogously 90 GeV and 230 GeV, for x = 2, 3. As pointed out above, these

“predictions” of the soft supersymmetry breaking scale do not take into account

the variation due to the unknown O(1) coefficients in any FN model. Allowing for

such a factor to be anything within the interval [ 1√
10

,
√

10], there is actually no

hard constraint on msoft, except for the case with x = 2 which prefers large msoft in

the first line and low msoft in the second.

For degenerate neutrinos, the possible variation of the absolute mass scale within

the interval [0.2 eV , 2.2 eV] leads to a further widening of the allowed range for ∆H ,

in addition to flexibility in ǫ and msoft. Since ∆L
21 = ∆L

31 = 0, we have

2∆H + 4XN3 ∈ [14.9 , 19.6], (3.44)

which results in the possible values

∆H = −2XN3 +

{
8, x = 0, 1, 2, (3),
9, x = 1, 2, 3.

(3.45)

Again, there is no significant constraint on msoft. However, the first line of Eq. (3.45)

with x = 2, (3) prefers a large soft breaking scale while the second line with x = 1

suggests low msoft. Due to the constraints on the U(1)X -charges given in Table 1,

we can define an integer n as

n ≡ −XN3 −
1

2
. (3.46)

Since XN i+XNj < 0, the X-charges of the right-handed neutrinos must be negative,

hence n ≥ 0. Another condition is that

XLi + XHU + XNj = ∆L
i1 + ∆H − 1

2
+ XNj ≥ ∆L

31 + ∆H − 1

2
+ XN3 ≥ 0 . (3.47)
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Inserting respectively Eqs. (3.43,3.45) shows that this is automatically satisfied.

However, there is yet another relation to be met. Recall that for the see-saw

mechanism we require M
(D) ≪ M

(M). This provides us with a lower bound on

XN i, as can be seen in the following. From Eqs. (3.3) and (3.4), the lightest right-

handed neutrino has a Majorana mass of the order msoft ǫ− 2X
N3 and the heaviest

Dirac mass is of order 〈HU〉 ǫX
L3+X

HU +X
N3 . Therefore we require

msoft

〈HU〉 ≫ ǫX
L3+X

HU +3X
N3 . (3.48)

As a conservative estimate, we take msoft = 1000 GeV, yielding msoft

〈HU 〉 ≈ ǫ−1 for the

left-hand side. Therefore

∆L
31 + ∆H − 1

2
+ 3XN3 = XL3 + XHU + 3XN3 > −1. (3.49)

For the hierarchical cases, we insert Eq. (3.43) into Eq. (3.49). Expressing XN3 in

terms of n ≥ 0 we arrive at the conditions

0 ≤ n ≤
{

8, x = 0, 1, (2),
9, x = 2, 3,

(3.50)

where the two lines correspond to the two possibilities for ∆H in Eq. (3.43).

For the degenerate case, where ∆L
31 = 0, we similarly obtain with Eq. (3.45)

0 ≤ n ≤
{

7, x = 0, 1, 2, (3),
8, x = 1, 2, 3.

(3.51)

In Table 4, we give all sets of parameters (∆L
21, ∆

L
31, 3ζ + p, ∆H , x, n), which comply

with the phenomenology of neutrino masses and mixings for Case II. We assume

z = 1, and the parameter y = −1, 0, 1 remains unaffected by the neutrino sector.

Compared to the analogous table for Case I, we have added the parameter n ∈ N,

which is defined by the X-charge of the right-handed neutrino N3 [cf. Eq. (3.46)]

and determines the parameter ∆H . Limiting ourselves to Case II restricts the

allowed values for n. Altogether we can thus find [(4 × 8 + 3 × 9) + (3 × 9 + 2 ×
10) + (3 × 9 + 2 × 10) + (3 × 9 + 2 × 10)] × 3 = 600 sets of X-charge assignments,

including also less favored possibilities. Some of these charge assignments, however,

are identical due to the first two rows of Table 4. There are 504 distinct sets of X-

charges. A selected subset resulting from Table 4 is given in Appendix B, Table 7.

For the relevant criteria see the next Section.

It is worth noting that there is a constraint from neutrino oscillation due to the

presence of right-handed states. The most stringent limit comes from appearance

experiment searches: νµ → νℓ, for ℓ = e, τ . Because we required the right-handed

neutrino masses to be much higher than the light neutrino masses, Eq. (3.48),

the oscillation probability is averaged out, and hence we obtain an upper limit

on the mixing angle. The effective “sin2 2θ” must be less than about 3 × 10−4

[65, 66, 67, 68, 59]. In terms of the mixing matrices, the limit is therefore |UµiU
∗
ℓi| ≈
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∆L
21 ∆L

31 3ζ + p ∆H x n normal inverted degenerate

0 0 −1 2n +

{
9
10

0, 1, 2, (3)
1, 2, 3

0 ≤ n ≤ 7
0 ≤ n ≤ 8

X

0 0 −1 2n +

{
10
11

0, 1, (2)
2, 3

0 ≤ n ≤ 8
0 ≤ n ≤ 9

X X

0 −1 −2 2n +

{
11
12

0, 1, (2)
2, 3

0 ≤ n ≤ 8
0 ≤ n ≤ 9

X

− 1 −2 −4 2n +

{
12
13

0, 1, (2)
2, 3

0 ≤ n ≤ 8
0 ≤ n ≤ 9

X

Table 4: The sets of parameters which are compatible with neutrino phenomenology in
Case II where the term LiHUN j has pure FN origin while N iN j is generated via GM/KN.
We assume z = 1. The parameter y = −1, 0, 1 remains unconstrained, n can take only
positive integer values which are restricted as shown in the table.

M
(D)
µi M

(D)
ℓi

M
(M)
ii

2 . ǫ2, where we assumed msoft ∼ 〈HU〉. Therefore, we obtain 2∆H +∆L
21 +

∆L
ℓi − 6n > 5. This restricts the allowed ranges of n in Table 4 slightly more: All

upper limits on n are reduced by 1 to 6, 7, 7, 8, 7, 8, 7, 8, respectively.

(III) For Case III the scale of the Dirac mass matrix M
(D)
ij in Eq. (3.5) is given by the

(1, 1) entry. Since XL1 + XHU + XN1 < 0, this mass scale has an upper bound

M
(D)
11 <

〈HU〉msoft

Mgrav

. (3.52)

Calculating the light neutrino mass matrix by the see-saw formula, Eq. (3.7), can

only generate an absolute neutrino mass scale mν
abs which is smaller than M

(D)
11 .

Furthermore,

0.05 eV ≤ mν
abs < M

(D)
11 <

〈HU〉msoft

Mgrav
, (3.53)

and thus the soft scale has to be extraordinarily large, at least 500 TeV. This renders

Case III highly unattractive. We will therefore not elaborate on the possibility of

the Dirac mass matrix being generated by GM/KN+FN any further.

(IV) As for Case III.

4 An X-charged Hidden Sector?

The GS cancellation of chiral anomalies often requires the introduction of further X-

charged matter fields, which are singlets under the Standard Model gauge group, i.e. hidden
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sector superfields, for examples see Refs. [7, 8, 69].6 But as we now explain, in our P6 con-

serving FN study, it is possible to have GS anomaly cancellation without exotic, hidden

sector, matter. In such a case, anomaly considerations open up a window on the un-

derlying string theory. It should be stressed that the condition of no further X-charged

matter is an option which does not affect any of the previous considerations.

Two of the GS conditions are given as7 [7]

ACCX

kC

=
AGGX

24
=

AXXX

kX

, (4.1)

where the positive real parameters k... are the affine or Kač-Moody levels, which take

integer values for non-Abelian gauge groups. A... denote the anomaly coefficients, with

G standing for “gravity”, C for SU(3)C , and X for U(1)X . The k... are related to the

corresponding gauge coupling constants at the unification scale

g2
CkC = g2

XkX = 2g2
string. (4.2)

These 2 + 2 equations give

gstring = gC

√
12 · ACCX

AGGX
, gX = gC

√
ACCX

AXXX
,

kX =
24 · AXXX

AGGX
, kC =

24 · ACCX

AGGX
.

(4.3)

Assuming, as in deriving Table 1, that all non-MSSM superfields are color singlets, we

have

ACCX = 1
2

3∑

i=1

(
2XQi + XU i + XDi

)
, (4.4)

AGGX =

3∑

i=1

(
6XQi + 3XU i + 3XDi + 2XLi + XEi + XN i

)
(4.5)

+ 2 (XHD + XHU ) + XA + Ahidden
GGX ,

AXXX =

3∑

i=1

(
6XQi

3 + 3XU i
3 + 3XDi

3 + 2XLi
3 + XEi

3 + XN i
3
)

(4.6)

+ 2
(
XHD

3 + XHU
3
)

+ XA
3 + Ahidden

XXX .

Here and in Eq. (4.2), we have used the standard GUT-normalization of non-Abelian

groups with generators ta such that tr[tatb] = 1
2
δab. With Table 1, we get e.g.

ACCX = 3
2
(6 + x + z), (4.7)

AGGX = 62 + 12x + 8z + ∆N
1 + ∆N

2 + ∆N
3 + ∆L

21 + ∆L
31 + 3∆H + Ahidden

GGX . (4.8)

So despite the 17 MSSM X-charges being known, cf. Tables 3 and 4, we cannot give

numerical values for {gstring, gX , kX , kC}, since the ∆N
i , Ahidden

GGX and Ahidden
XXX are still

6However, in Ref. [7], with three instead of two generations of right-handed neutrinos and kC = 3 the
GS anomaly cancellation conditions could also have been satisfied without exotic matter.

7We differ from Ref. [7] by a factor of 3 in the denominator of the third ratio.
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unknown. But now let us suppose that the left-chiral MSSM superfields, as well as

the N i and the flavon A are the only X-charged superfields. Hence Ahidden
GGX and Ahidden

XXX

vanish.8 We can then scan all 48+504 X-charge assignments, defined by the parameters

{x, z, ∆L
21, ∆

L
31, ∆

H}, for solutions to the fourth equality of Eq. (4.3) with the requirement

of kC being an integer:

kC =
36(6 + x + z)

62 + 12x + 8z + ∆N
1 + ∆N

2 + ∆N
3 + ∆L

21 + ∆L
31 + 3∆H

. (4.9)

As pointed out above, the integers ∆N
i are already constrained. Besides the required

ordering ∆N
3 ≤ ∆N

2 ≤ ∆N
1 we have

• For Case I, see below Eqs. (3.39) and (3.40),

hierarchical : 2 ≤ ∆N
3 , 2∆N

1 − ∆N
3 ≤ 21 , (4.10)

degenerate : 3 ≤ ∆N
3 , 2∆N

1 − ∆N
3 ≤ 20 , (4.11)

• and for Case II, see Eqs. (3.13,3.14,3.46), with n given in Table 4,

hierarchical : − n − 1 = ∆N
3 = ∆N

2 ≤ ∆N
1 < 0 , (4.12)

degenerate : − n − 1 = ∆N
3 = ∆N

2 = ∆N
1 . (4.13)

We then find that the 48 sets of Case I are all in accord with kC = 3. The required

values for
∑

i ∆
N
i are given in Table 6. The conditions on ∆N

i however do not determine

the X-charges of the right-handed neutrinos uniquely; see Appendix B for a complete

list of the remaining possibilities in each case. On the other hand, there exist six cases

(# 25, 26, 27, 37, 38, 39) which are also compatible with kC = 2. In these models, the

constraints on ∆N
i fix their individual values uniquely, cf. Table 6.

Turning to Case II, the X-charges of the right-handed neutrinos have to satisfy

stronger constraints due to Eqs. (4.12,4.13). Demanding Eq. (4.9), only 24 of the 504

models in Table 4 survive; they are displayed in Table 7. In all 24 cases we have kC = 2,

and ∆N
i is fixed uniquely as given in Table 8.

A brief comment about the number of possible models before and after imposing

Eq. (4.9) is in order. Excluding the right-handed neutrinos, we start with 48 distinct

sets of X-charge assignments in Case I and 504 in Case II. This huge difference is due to

the fact that in Case II the dependence of the effective neutrino mass matrix M
(ν) on

the right-handed neutrinos N i, see Eq. (3.9), allows for a variation of ∆H parameterized

by n. In Case I, such a dependence and thus a similar parameter is absent. Taking the

right-handed neutrinos into account, the dependence of M
(ν) on N i strongly limits the

possible X-charges for N i in Case II [cf. Eqs. (4.12,4.13)], whereas for Case I, XN i can

be chosen from an interval [cf. Eqs. (4.10,4.11)]. When it comes to finding solutions to

Eq. (4.9), this freedom of assigning XN i in Case I allows each of the 48 sets of X-charges

to be consistent without an X-charged hidden sector. In Case II, the situation is much

more constrained, reducing 504 models to only 24 viable ones.

8Ahidden

GGX
and Ahidden

XXX
also vanish if the additional exotic particles are vector-like.
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Having determined the Kač-Moody levels kC which are consistent with the assumption

of no exotic X-charged matter, we can calculate the string coupling constant gstring from

Eq. (4.2). Inserting gC [Mstring] ≈ gC [MGUT] = 0.72 we get

gstring ∼ 0.88 , for kC = 3 , (4.14)

gstring ∼ 0.72 , for kC = 2 . (4.15)

From kC we can obtain the other Kač-Moody levels of GSM from the gauge coupling

unification relation9

kC = kW =
3

5
kY , (4.16)

which adopts the Y -normalization with YL = 1/2, and has already been implemented

when deriving Table 1, cf. Ref. [7]. Thus, the models of Case I with kC = 3 have kW = 3

and kY = 5, while those with kC = 2 (i.e. six models of Case I and all models of Case II)

demand kW = 2 and kY = 10/3.

The question arises whether Kač-Moody levels kC and kW higher than 1 can be

obtained from string model building. Actually, such models have been considered,

e.g. [73, 74, 75], but a systematic investigation of this issue is lacking. Nevertheless,

there are indications that higher Kač-Moody levels might occur rather generically, see

e.g. Ref. [76]. Also, from the phenomenological point of view, models with higher levels

have already been discussed, e.g. in Ref. [77]. This is important regarding the possible

representations for the Higgs fields in the theory [78, 79, 80].

In addition to the Kač-Moody levels of GSM, we can, from a bottom-up perspective,

calculate the U(1)X gauge coupling constant gX in those cases, where the ∆N
i are uniquely

fixed, i.e. for all models with kC = 2. Evaluating the second equality of Eq. (4.3) yields

values within the interval

gX ∈ [0.0085 , 0.0145] , (4.17)

which in turn enables us to calculate the mass of the heavy U(1)X vector boson B′

mB′ ∼ gX · ǫ · Mgrav ≈ 5 × 1015 GeV. (4.18)

The results for each of the 6+24 models with uniquely fixed X-charge assignments are

listed in Tables 6+8. We point out that the kX corresponding to the above determined

gX are quite high integers, e.g. 8839 for # 6 of Case II. This underlines that the scenarios

without X-charged exotic matter are to be taken more as an existence proof rather than

concrete models.

5 Discussion and Conclusion

In this note, we have devised FN models in which the anomalous U(1)X gauge symmetry

is broken down to the discrete Z6-symmetry, proton hexality. The masses of the light

neutrino states are generated by introducing right-handed neutrinos N i and applying

9A non-standard gauge coupling unification with kC = kW = 3

4
kY was put forward in Refs. [70, 71]

and has been recently applied to FN models in Ref. [72].
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the see-saw mechanism. For Case I, the Majorana mass terms of N i originate only

from the FN-mechanism, while for Case II they result effectively from a combination of

the FN- and the GM/KN-mechanism. Requiring phenomenologically acceptable fermion

masses and mixings, the GS mixed anomaly cancellation conditions with gauge coupling

unification, as well as the low-energy remnant discrete symmetry P6, we are led to 48

X-charge assignments for Case I (cf. Table 3) and 504 X-charge assignments for Case II

(cf. Table 4).

Under the assumption of no exotic X-charged particles, all 48 sets of Case I, but only

24 of the 504 sets of Case II are compatible with the GS anomaly cancellation conditions.

The X-charges of the resulting 48+24 sets are shown in Tables 5 and 7. Furthermore, we

can determine the Kač-Moody levels of GSM in these models. For kC = 2, the X-charges

of the right-handed neutrinos are fixed uniquely. This enables us to calculate the gauge

coupling constant gX of U(1)X in these cases.

All results are listed in Tables 6 and 8 together with the obtained light neutrino

mass spectrum, the maximal denominator of the X-charges, as well as some additional

comments on each of the models. We emphasize here that all are phenomenologically

acceptable because the unknown O(1) coefficients allow a certain flexibility. However, if

asked to select “preferred” models, one can consider the following three criteria:

(1) “nice” CKM matrix,

(2) naturally small CHOOZ mixing angle,

(3) small maximal denominator for the X-charges.

Sets with y = 0 lead to our preferred ǫ-structure of the CKM matrix, see Sect. 2. These

amount to one third of all the models. The CHOOZ mixing angle corresponds to the

(1, 3) entry of the MNS matrix. This is naturally suppressed in our models if ∆L
31 = −2

(UMNS
13 ∼ ǫ2) or ∆L

31 = −1 (UMNS
13 ∼ ǫ), see the end of Sect. 3.2. Altogether 24+21

sets lead to a naturally small CHOOZ angle by virtue of the U(1)X charge assignments.

Finally, we have labeled the 10+3 models with a maximal denominator ≤ 54 by “denom.”

in the comments. From the aesthetical viewpoint, the most appealing set is # 6 of Case II

(Table 8) where all X-charges are multiples of 1/6. This model features a small CHOOZ

angle but, unfortunately, a not so nice CKM matrix. With regard to criterion (3),

we however emphasize that models with highly-fractional X-charges are very common,

especially when fulfilling phenomenological constraints, see Ref. [81].

Looking for models which satisfy all of the above three criteria, we find that – re-

markably enough – only one remains: namely # 32 of Case I (Table 6). This model

has a normal hierarchical neutrino mass spectrum with UMNS
13 ∼ ǫ, the maximal de-

nominator of the X-charges is 30. Without X-charged hidden sector matter, kC = 3 and∑
i ∆

N
i = 18, leading to 16 distinct X-charge assignments for the right-handed neutrinos,

cf. Appendix B.
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Appendix

A X
Na -Dependence of the Neutrino Masses

For Case II [cf. Eq. (3.9)], the Dirac and the Majorana mass matrices can be written as

M
(D)
ij = A · αij ǫX

Li+X
Nj , M

(M)
ij = B · βij ǫ−X

Ni−X
Nj , (A.1)

with A ≡ 〈HU〉 ǫX
HU and B ≡ m3/2. The dimensionless coefficients αij and βij are of

order one. In our basis, M
(M)
ij and thus βij is diagonal. With this notation the effective

light neutrino mass matrix reads

M
(ν,II)
ij = − A2

B
·
∑

k

αik αjk

βkk
ǫX

Li+X
Lj +4X

Nk

= − A2

B
·
∑

k

aik ajk. (A.2)

In the last step we have defined aik ≡ αik√
βkk

ǫX
Li+2X

Nk . The light neutrino masses m̃ = A2

B
λ

can now be obtained from the characteristic polynomial10 of M
(ν,II),

C3λ
3 + C2λ

2 + C1λ + C0 = 0, (A.3)

where

C3 = p1p2p3, (A.4)

10
M

(ν) can be diagonalized by a unitary matrix V . From V
T

· M
(ν)

· V = M
(ν)
diag we obtain the

equation M
(ν)~v = m̃~v∗ = m̃P~v. Here, ~v is one of the three normalized vectors of V , and P is a

diagonal matrix with Pii = pi =
v
∗

i

vi
. The singular values m̃ of M

(ν) are determined by the condition

det(M (ν) − m̃ P ) = 0, which – up to the phase factors pi – is just the characteristic polynomial.
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C2 = p1p2(a
2
33 + a2

32 + a2
31) + p1p3(a

2
23 + a2

22 + a2
21) + p2p3(a

2
13 + a2

12 + a2
11), (A.5)

C1 = p1

[
(a33a22 − a32a23)

2 + (a31a23 − a33a21)
2 + (a32a21 − a31a22)

2
]

+ p2

[
(a13a32 − a12a33)

2 + (a11a33 − a13a31)
2 + (a12a31 − a11a32)

2
]

+ p3

[
(a23a12 − a22a13)

2 + (a21a13 − a23a11)
2 + (a22a11 − a21a12)

2
]
, (A.6)

C0 = (a33a22a11 + a31a23a12 + a32a21a13 − a33a21a12 − a31a22a13 − a32a23a11)
2. (A.7)

As aik ∼ ǫX
Li+2X

Nk , the order of the coefficients C... can be readily determined. With

XL3 ≤ XL2 ≤ XL1 and XN3 ≤ XN2 ≤ XN1 we get

C3 = c3, (A.8)

C2 = c2 ǫ2X
L3+4X

N3 , (A.9)

C1 = c1 ǫ2X
L2+2X

L3+4X
N2+4X

N3 , (A.10)

C0 = c0 ǫ2X
L1+2X

L2+2X
L3+4X

N1+4X
N2+4X

N3 , (A.11)

where c3, c2, c1, c0 are O(1) coefficients. Inserting these expressions into Eq. (A.3), the

three singular values λ can be obtained. The order of the largest λ depends only on the

cubic and the quadratic term: Assuming [this is justified in hindsight11 from the result

Eq. (A.13)]

C3λ
3, C2λ

2 > C1λ, C0, (A.12)

we get C3λ + C2 = 0, which yields

λ3 = − c2

c3
ǫ2X

L3+4X
N3 + equal/higher orders, (A.13)

where “equal” applies only if XL2 = XL3 and XN2 = XN3. Similarly, the order of the

second singular value is derived from the quadratic and the linear term of Eq. (A.3)

λ2 = − c1

c2

ǫ2X
L2+4X

N2 + equal/higher orders, (A.14)

where “equal” applies only if either XL2 = XL3 and XN2 = XN3 or XL1 = XL2 and

XN1 = XN2 . Finally, the order of λ1 is obtained from the linear and the constant term

λ1 = − c0

c1

ǫ2X
L1+4X

N1 + equal/higher orders, (A.15)

where “equal” applies only if XL1 = XL2 and XN1 = XN2 . This yields the following

ratios for the light neutrino masses

m̃3 : m̃2 : m̃1 ∼ ǫ2X
L3+4X

N3 : ǫ2X
L2+4X

N2 : ǫ2X
L1+4X

N1 . (A.16)

Analogously, we obtain for Case III that

m̃1 : m̃2 : m̃3 ∼ ǫ−2X
L1−4X

N1 : ǫ−2X
L2−4X

N2 : ǫ−2X
L3−4X

N3 . (A.17)

11This method is akin to the slow roll approximation in inflationary cosmology: The Klein-Gordon
equation for a homogeneous scalar field ϕ reads ϕ̈ + 3Hϕ̇ + m2ϕ = 0, H being the Hubble parameter.
Assuming slow roll, i.e. ϕ̈ ≪ {Hϕ̇, m2ϕ}, yields 3Hϕ̇ + m2ϕ = 0, which’s solution in hindsight justifies
the slow roll approximation.
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B Tables of X-Charges

Combining Table 3 with Table 1 leads to the X-charge assignments of Table 5 (Case I):

e.g. the choice ∆L
31 = 0, 3ζ + p = −1 and ∆H = −3, with z = 1, yields for instance

XHD =
4x · (3x + 28) + 36y + 193

30(x + 7)
.

Then one picks a value for x and a value for y. Table 6 displays some features of these

48 possibilities. In search for a low fractionality for the X-charges one finds with y = 0

cases # 8 (54), # 17 (48), # 32 (30), with y = 1 cases # 21 (30), # 27 (42), with y = −1

cases # 19 (18), # 22 (12), # 25 (30), # 31 (18), # 43 (30). The numbers in parentheses

give the maximal denominators of the X-charges, in the normalization where XA = −1.

Assuming no X-charged hidden sector superfields, one can determine the Kač-Moody

levels kC and the sum of the ∆N
i . Recalling the constraints of Eqs. (4.10,4.11), we find

for kC = 3 that (∆N
1 , ∆N

2 , ∆N
3 ) can take the following values, respectively:

∑
i ∆

N
i = 23: (8, 8, 7), (9, 7, 7), (9, 8, 6), (9, 9, 5), (10, 7, 6), (10, 8, 5), (10, 9, 4),

(10, 10, 3), (11, 6, 6), (11, 7, 5), (11, 8, 4), (11, 9, 3), (12, 6, 5), (12, 7, 4),

∑
i ∆

N
i = 20: (7, 7, 6), (8, 6, 6), (8, 7, 5), (8, 8, 4), (9, 6, 5), (9, 7, 4), (9, 8, 3), (9, 9, 2),

(10, 5, 5), (10, 6, 4), (10, 7, 3), (10, 8, 2), (11, 5, 4), (11, 6, 3), (11, 7, 2),

(12, 4, 4), (12, 5, 3),

∑
i ∆

N
i = 18: (6, 6, 6), (7, 6, 5), (7, 7, 4), (8, 5, 5), (8, 6, 4), (8, 7, 3), (8, 8, 2), (9, 5, 4),

(9, 6, 3), (9, 7, 2), (10, 4, 4), (10, 5, 3), (10, 6, 2), (11, 4, 3), (11, 5, 2), (12, 3, 3),

∑
i ∆

N
i = 17: (6, 6, 5), (7, 5, 5), (7, 6, 4), (7, 7, 3), (8, 5, 4), (8, 6, 3), (8, 7, 2),

(9, 4, 4), (9, 5, 3), (9, 6, 2), (10, 4, 3), (10, 5, 2), (11, 3, 3), (11, 4, 2).

For kC = 2, the ∆N
i are uniquely fixed and given in Table 6.

It is interesting to note that the lower limit from thermal leptogenesis, M
(M)
11 & 4 ×

108 GeV [64], requires 1 + 2∆N
1 . 15, and hence ∆N

1 . 7. We observe that there is

only a small number of combinations allowed within this limit [e.g. for
∑

i ∆
N
i = 20 only

(7, 7, 6) is okay]. On the other hand, some of the solutions above predict no hierarchy

between N1 and N2, and the bound may be less severe, e.g. 2× 107 GeV in Ref. [82]. In

the extreme case of resonant enhancement, one can allow for even TeV scale right-handed

neutrinos [83].

Case II is treated similarly. However, displaying explicitly the 504 sets of X-charges

which are hinted at in Table 4 would fill more than 12 pages. We content ourselves with

presenting those 24 models which are consistent without X-charged exotic matter. They

are given in Tables 7 and 8. Small maximal denominators of the X-charges are obtained

for cases # 6 (6), # 7 (30), # 9 (42).
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# X
HD X

HU X
Q1 X

Q2 X
Q3 X

U1
X

U2
X

U3
X

D1
X

D2
X

D3
X

L1 X
L2 X

L3 X
E1

X
E2

X
E3

1 157

210
−

367

210

388

105

388

105

178

105

1271

210

431

210

11

210
−

31

70
−

171

70
−

171

70
−

184

105
−

184

105
−

184

105

1261

210

631

210

211

210

2 193

210
−

403

210

452

105

347

105

137

105

393

70

183

70

43

70
−

257

210
−

467

210
−

467

210
−

166

105
−

166

105
−

166

105

1189

210

559

210

139

210

3 229

210
−

439

210

172

35

102

35

32

35

1087

210

667

210

247

210
−

421

210
−

421

210
−

421

210
−

148

105
−

148

105
−

148

105

1117

210

487

210

67

210

4 281

240
−

521

240

311

80

311

80

151

80

377

60

137

60

17

60
−

7

120
−

247

120
−

247

120
−

319

240
−

319

240
−

319

240

739

120

379

120

139

120

5 317

240
−

557

240

1081

240

841

240

361

240

349

60

169

60

49

60
−

33

40
−

73

40
−

73

40
−

283

240
−

283

240
−

283

240

703

120

343

120

103

120

6 353

240
−

593

240

1229

240

749

240

269

240

107

20

67

20

27

20
−

191

120
−

191

120
−

191

120
−

247

240
−

247

240
−

247

240

667

120

307

120

67

120

7 143

90
−

233

90

551

135

551

135

281

135

1757

270

677

270

137

270

89

270
−

451

270
−

451

270
−

41

45
−

41

45
−

41

45

569

90

299

90

119

90

8 31

18
−

49

18

127

27

100

27

46

27

325

54

163

54

55

54
−

23

54
−

77

54
−

77

54
−

7

9
−

7

9
−

7

9

109

18

55

18

19

18

9 167

90
−

257

90

719

135

449

135

179

135

1493

270

953

270

413

270
−

319

270
−

319

270
−

319

270
−

29

45
−

29

45
−

29

45

521

90

251

90

71

90

10 601

300
−

901

300

1283

300

1283

300

683

300

1009

150

409

150

109

150

18

25
−

32

25
−

32

25
−

149

300
−

149

300
−

149

300

487

75

262

75

112

75

11 637

300
−

937

300

1471

300

1171

300

571

300

311

50

161

50

61

50
−

2

75
−

77

75
−

77

75
−

113

300
−

113

300
−

113

300

469

75

244

75

94

75

12 673

300
−

973

300

553

100

353

100

153

100

857

150

557

150

257

150
−

58

75
−

58

75
−

58

75
−

77

300
−

77

300
−

77

300

451

75

226

75

76

75

13 67

210
−

277

210

368

105

368

105

158

105

407

70

127

70
−

13

70

37

210
−

383

210
−

383

210
−

124

105
−

124

105
−

124

105

1231

210

601

210

181

210

14 103

210
−

313

210

144

35

109

35

39

35

1129

210

499

210

79

210
−

127

210
−

337

210
−

337

210
−

106

105
−

106

105
−

106

105

1159

210

529

210

109

210

15 139

210
−

349

210

496

105

286

105

76

105

1037

210

617

210

197

210
−

97

70
−

97

70
−

97

70
−

88

105
−

88

105
−

88

105

1087

210

457

210

37

210

16 179

240
−

419

240

887

240

887

240

407

240

121

20

41

20

1

20

67

120
−

173

120
−

173

120
−

181

240
−

181

240
−

181

240

721

120

361

120

121

120

17 43

48
−

91

48

69

16

53

16

21

16

67

12

31

12

7

12
−

5

24
−

29

24
−

29

24
−

29

48
−

29

48
−

29

48

137

24

65

24

17

24

18 251

240
−

491

240

1183

240

703

240

223

240

307

60

187

60

67

60
−

39

40
−

39

40
−

39

40
−

109

240
−

109

240
−

109

240

649

120

289

120

49

120

19 7

6
−

13

6

35

9

35

9

17

9

113

18

41

18

5

18

17

18
−

19

18
−

19

18
−

1

3
−

1

3
−

1

3

37

6

19

6

7

6

20 13

10
−

23

10

203

45

158

45

68

45

521

90

251

90

71

90

17

90
−

73

90
−

73

90
−

1

5
−

1

5
−

1

5

59

10

29

10

9

10

21 43

30
−

73

30

77

15

47

15

17

15

53

10

33

10

13

10
−

17

30
−

17

30
−

17

30
−

1

15
−

1

15
−

1

15

169

30

79

30

19

30

22 19

12
−

31

12

49

12

49

12

25

12

13

2

5

2

1

2

4

3
−

2

3
−

2

3

1

12

1

12

1

12

19

3

10

3

4

3

23 511

300
−

811

300

471

100

371

100

171

100

899

150

449

150

149

150

44

75
−

31

75
−

31

75

61

300

61

300

61

300

457

75

232

75

82

75

24 547

300
−

847

300

1601

300

1001

300

401

300

823

150

523

150

223

150
−

4

25
−

4

25
−

4

25

97

300

97

300

97

300

439

75

214

75

64

75

25 −
1

30
−

29

30

17

5

17

5

7

5

167

30

47

30
−

13

30

19

30
−

41

30
−

41

30
−

8

15
−

8

15
−

23

15

167

30

77

30

47

30

26 29

210
−

239

210

421

105

316

105

106

105

359

70

149

70

9

70
−

31

210
−

241

210
−

241

210
−

38

105
−

38

105
−

143

105

1097

210

467

210

257

210

27 13

42
−

55

42

97

21

55

21

13

21

197

42

113

42

29

42
−

13

14
−

13

14
−

13

14
−

4

21
−

4

21
−

25

21

205

42

79

42

37

42

28 97

240
−

337

240

287

80

287

80

127

80

349

60

109

60
−

11

60

121

120
−

119

120
−

119

120
−

23

240
−

23

240
−

263

240

683

120

323

120

203

120

29 133

240
−

373

240

1009

240

769

240

289

240

107

20

47

20

7

20

29

120
−

91

120
−

91

120

13

240

13

240
−

227

240

647

120

287

120

167

120

30 169

240
−

409

240

1157

240

677

240

197

240

293

60

173

60

53

60
−

21

40
−

21

40
−

21

40

49

240

49

240
−

191

240

611

120

251

120

131

120

31 5

6
−

11

6

34

9

34

9

16

9

109

18

37

18

1

18

25

18
−

11

18
−

11

18

1

3

1

3
−

2

3

35

6

17

6

11

6

32 29

30
−

59

30

22

5

17

5

7

5

167

30

77

30

17

30

19

30
−

11

30
−

11

30

7

15

7

15
−

8

15

167

30

77

30

47

30

33 11

10
−

21

10

226

45

136

45

46

45

457

90

277

90

97

90
−

11

90
−

11

90
−

11

90

3

5

3

5
−

2

5

53

10

23

10

13

10

34 377

300
−

677

300

397

100

397

100

197

100

943

150

343

150

43

150

133

75
−

17

75
−

17

75

227

300

227

300
−

73

300

449

75

224

75

149

75

35 413

300
−

713

300

1379

300

1079

300

479

300

289

50

139

50

39

50

77

75

2

75

2

75

263

300

263

300
−

37

300

431

75

206

75

131

75

36 449

300
−

749

300

1567

300

967

300

367

300

791

150

491

150

191

150

7

25

7

25

7

25

299

300

299

300

1

300

413

75

188

75

113

75

37 −
53

210
−

157

210

353

105

353

105

143

105

377

70

97

70
−

43

70

187

210
−

233

210
−

233

210

26

105
−

79

105
−

184

105

1051

210

631

210

421

210

38 −
17

210
−

193

210

139

35

104

35

34

35

1039

210

409

210
−

11

210

23

210
−

187

210
−

187

210

44

105
−

61

105
−

166

105

979

210

559

210

349

210

39 19

210
−

229

210

481

105

271

105

61

105

947

210

527

210

107

210
−

47

70
−

47

70
−

47

70

62

105
−

43

105
−

148

105

907

210

487

210

277

210

40 47

240
−

287

240

851

240

851

240

371

240

113

20

33

20
−

7

20

151

120
−

89

120
−

89

120

167

240
−

73

240
−

313

240

613

120

373

120

253

120

41 83

240
−

323

240

333

80

253

80

93

80

311

60

131

60

11

60

59

120
−

61

120
−

61

120

203

240
−

37

240
−

277

240

577

120

337

120

217

120

42 119

240
−

359

240

1147

240

667

240

187

240

283

60

163

60

43

60
−

11

40
−

11

40
−

11

40

239

240
−

1

240
−

241

240

541

120

301

120

181

120

43 19

30
−

49

30

56

15

56

15

26

15

59

10

19

10
−

1

10

49

30
−

11

30
−

11

30

17

15

2

15
−

13

15

157

30

97

30

67

30

44 23

30
−

53

30

196

45

151

45

61

45

487

90

217

90

37

90

79

90
−

11

90
−

11

90

19

15

4

15
−

11

15

149

30

89

30

59

30

45 9

10
−

19

10

224

45

134

45

44

45

443

90

263

90

83

90

11

90

11

90

11

90

7

5

2

5
−

3

5

47

10

27

10

17

10

46 319

300
−

619

300

1177

300

1177

300

577

300

307

50

107

50

7

50

151

75

1

75

1

75

469

300

169

300
−

131

300

403

75

253

75

178

75

47 71

60
−

131

60

91

20

71

20

31

20

169

30

79

30

19

30

19

15

4

15

4

15

101

60

41

60
−

19

60

77

15

47

15

32

15

48 391

300
−

691

300

1553

300

953

300

353

300

769

150

469

150

169

150

13

25

13

25

13

25

541

300

241

300
−

59

300

367

75

217

75

142

75

Table 5: The numerical results for the 48 possible X-charge assignments of Case I,
determined from Tables 3+1.
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# ∆L
21

∆L
31

3ζ + p ∆H x y spectrum
maximal

denominator

anomalies :

kC ,
P

i ∆N
i

comments

1 0 0 −1 −3 0 −1 deg. 210 3 23 (
P

i mi ≈ 5.0 eV)

2 0 0 −1 −3 0 0 deg. 210 3 23 CKM (
P

i mi ≈ 5.0 eV)

3 0 0 −1 −3 0 1 deg. 210 3 23 (
P

i mi ≈ 5.0 eV)

4 0 0 −1 −3 1 −1 deg. 240 3 23 (
P

i mi ≈ 3.2 eV)

5 0 0 −1 −3 1 0 deg. 240 3 23 CKM (
P

i mi ≈ 3.2 eV)

6 0 0 −1 −3 1 1 deg. 240 3 23 (
P

i mi ≈ 3.2 eV)

7 0 0 −1 −3 2 −1 deg. 270 3 23 (
P

i mi ≈ 2.1 eV)

8 0 0 −1 −3 2 0 deg. 54 3 23 CKM, denom. (
P

i mi ≈ 2.1 eV)

9 0 0 −1 −3 2 1 deg. 270 3 23 (
P

i mi ≈ 2.1 eV)

10 0 0 −1 −3 3 −1 deg. 300 3 23 (
P

i mi ≈ 1.4 eV)

11 0 0 −1 −3 3 0 deg. 300 3 23 CKM (
P

i mi ≈ 1.4 eV)

12 0 0 −1 −3 3 1 deg. 300 3 23 (
P

i mi ≈ 1.4 eV)

13 0 0 −1 −2 0 −1 inv. & nor. hier. 210 3 20

14 0 0 −1 −2 0 0 inv. & nor. hier. 210 3 20 CKM

15 0 0 −1 −2 0 1 inv. & nor. hier. 210 3 20

16 0 0 −1 −2 1 −1 inv. & nor. hier. 240 3 20

17 0 0 −1 −2 1 0 inv. & nor. hier. 48 3 20 CKM, denom.

18 0 0 −1 −2 1 1 inv. & nor. hier. 240 3 20

19 0 0 −1 −2 2 −1 inv. & nor. hier. 18 3 20 denom.

20 0 0 −1 −2 2 0 inv. & nor. hier. 90 3 20 CKM

21 0 0 −1 −2 2 1 inv. & nor. hier. 30 3 20 denom.

22 0 0 −1 −2 3 −1 inv. & nor. hier. 12 3 20 denom.

23 0 0 −1 −2 3 0 inv. & nor. hier. 300 3 20 CKM

24 0 0 −1 −2 3 1 inv. & nor. hier. 300 3 20

25 0 −1 −2 −1 0 −1 nor. hier. 30
2 60
3 18

CHOOZ, denom.,
∆N

1,2,3 = 20, gX = 0.0141

26 0 −1 −2 −1 0 0 nor. hier. 210
2 60
3 18

CHOOZ, CKM,
∆N

1,2,3 = 20, gX = 0.0142

27 0 −1 −2 −1 0 1 nor. hier. 42
2 60
3 18

CHOOZ, denom.,
∆N

1,2,3 = 20, gX = 0.0141

28 0 −1 −2 −1 1 −1 nor. hier. 240 3 18 CHOOZ

29 0 −1 −2 −1 1 0 nor. hier. 240 3 18 CHOOZ, CKM

30 0 −1 −2 −1 1 1 nor. hier. 240 3 18 CHOOZ

31 0 −1 −2 −1 2 −1 nor. hier. 18 3 18 CHOOZ, denom.

32 0 −1 −2 −1 2 0 nor. hier. 30 3 18 CHOOZ, CKM, denom.

33 0 −1 −2 −1 2 1 nor. hier. 90 3 18 CHOOZ

34 0 −1 −2 −1 3 −1 nor. hier. 300 3 18 CHOOZ

35 0 −1 −2 −1 3 0 nor. hier. 300 3 18 CHOOZ, CKM

36 0 −1 −2 −1 3 1 nor. hier. 300 3 18 CHOOZ

37 −1 −2 −4 0 0 −1 nor. hier. 210
2 59
3 17

CHOOZ,
∆N

1,2 = 20, ∆N
3

= 19, gX = 0.0145

38 −1 −2 −4 0 0 0 nor. hier. 210
2 59
3 17

CHOOZ, CKM,
∆N

1,2 = 20, ∆N
3

= 19, gX = 0.0145

39 −1 −2 −4 0 0 1 nor. hier. 210
2 59
3 17

CHOOZ,
∆N

1,2 = 20, ∆N
3

= 19, gX = 0.0145

40 −1 −2 −4 0 1 −1 nor. hier. 240 3 17 CHOOZ

41 −1 −2 −4 0 1 0 nor. hier. 240 3 17 CHOOZ, CKM

42 −1 −2 −4 0 1 1 nor. hier. 240 3 17 CHOOZ

43 −1 −2 −4 0 2 −1 nor. hier. 30 3 17 CHOOZ, denom.

44 −1 −2 −4 0 2 0 nor. hier. 90 3 17 CHOOZ, CKM

45 −1 −2 −4 0 2 1 nor. hier. 90 3 17 CHOOZ

46 −1 −2 −4 0 3 −1 nor. hier. 300 3 17 CHOOZ

47 −1 −2 −4 0 3 0 nor. hier. 60 3 17 CHOOZ, CKM

48 −1 −2 −4 0 3 1 nor. hier. 300 3 17 CHOOZ

Table 6: The features of the X-charge assignments in Table 5 (Case I). In the comments
we state the reason for preferring individual cases: “CKM” means that this model nat-
urally exhibits a nice CKM matrix, i.e. y = 0. “CHOOZ” refers to a naturally small
CHOOZ angle: sin θ13 ≈ ǫ|∆

L
31|, with |∆L

31| = 1, 2. We write “denom.” to label cases where
the X-charges have a maximal denominator ≤ 54. For the degenerate scenarios we show
the näıve sum of the neutrino masses,

∑
i mi, without O(1) coefficients. Assuming no

exotic matter, the three ∆N
i are uniquely fixed for kC = 2, unlike for kC = 3.
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# X
HD X

HU X
Q1 X

Q2 X
Q3 X

U1
X

U2
X

U3
X

D1
X

D2
X

D3
X

L1 X
L2 X

L3 X
E1

X
E2

X
E3

1 −
2453

210

2243

210
−

64

35
−

64

35
−

134

35
−

179

210
−

1019

210
−

1439

210

3677

210

3257

210

3257

210

1556

105

1556

105

1556

105

391

210
−

239

210
−

659

210

2 −
2417

210

2207

210
−

128

105
−

233

105
−

443

105
−

271

210
−

901

210
−

1321

210

1171

70

1101

70

1101

70

1574

105

1574

105

1574

105

319

210
−

311

210
−

731

210

3 −
2381

210

2171

210
−

64

105
−

274

105
−

484

105
−

121

70
−

261

70
−

401

70

3349

210

3349

210

3349

210

1592

105

1592

105

1592

105

247

210
−

383

210
−

803

210

4 −
2347

210

2137

210
−

163

105
−

163

105
−

373

105
−

131

210
−

971

210
−

1391

210

1171

70

1031

70

1031

70

1504

105

1504

105

1399

105

389

210
−

241

210
−

451

210

5 −
2311

210

2101

210
−

33

35
−

68

35
−

138

35
−

223

210
−

853

210
−

1273

210

3349

210

3139

210

3139

210

1522

105

1522

105

1417

105

317

210
−

313

210
−

523

210

6 −
65

6

59

6
−

1

3
−

7

3
−

13

3
−

3

2
−

7

2
−

11

2

91

6

91

6

91

6

44

3

44

3

41

3

7

6
−

11

6
−

17

6

7 −
361

30

331

30
−

29

15
−

29

15
−

59

15
−

11

10
−

51

10
−

71

10

539

30

479

30

479

30

232

15

232

15

217

15

47

30
−

43

30
−

73

30

8 −
2491

210

2281

210
−

139

105
−

244

105
−

454

105
−

323

210
−

953

210
−

1373

210

1203

70

1133

70

1133

70

1642

105

1642

105

1537

105

257

210
−

373

210
−

583

210

9 −
491

42

449

42
−

5

7
−

19

7
−

33

7
−

83

42
−

167

42
−

251

42

689

42

689

42

689

42

332

21

332

21

311

21

37

42
−

89

42
−

131

42

10 −
1103

90

1013

90
−

296

135
−

296

135
−

566

135
−

287

270
−

1367

270
−

1907

270

5521

270

4981

270

4981

270

821

45

821

45

776

45

91

90
−

179

90
−

269

90

11 −
1091

90

1001

90
−

212

135
−

347

135
−

617

135
−

419

270
−

1229

270
−

1769

270

5317

270

5047

270

5047

270

827

45

827

45

782

45

67

90
−

203

90
−

293

90

12 −
1079

90

989

90
−

128

135
−

398

135
−

668

135
−

551

270
−

1091

270
−

1631

270

5113

270

5113

270

5113

270

833

45

833

45

788

45

43

90
−

227

90
−

317

90

13 −
2393

210

2183

210
−

167

105
−

167

105
−

377

105
−

169

210
−

1009

210
−

1429

210

1189

70

1049

70

1049

70

1586

105

1481

105

1376

105

271

210
−

149

210
−

359

210

14 −
2357

210

2147

210
−

103

105
−

208

105
−

418

105
−

87

70
−

297

70
−

437

70

3403

210

3193

210

3193

210

1604

105

1499

105

1394

105

199

210
−

221

210
−

431

210

15 −
2321

210

2111

210
−

13

35
−

83

35
−

153

35
−

353

210
−

773

210
−

1193

210

3239

210

3239

210

3239

210

1622

105

1517

105

1412

105

127

210
−

293

210
−

503

210

16 −
2573

210

2363

210
−

69

35
−

69

35
−

139

35
−

269

210
−

1109

210
−

1529

210

3827

210

3407

210

3407

210

1706

105

1601

105

1496

105

211

210
−

209

210
−

419

210

17 −
2537

210

2327

210
−

143

105
−

248

105
−

458

105
−

361

210
−

991

210
−

1411

210

1221

70

1151

70

1151

70

1724

105

1619

105

1514

105

139

210
−

281

210
−

491

210

18 −
2501

210

2291

210
−

79

105
−

289

105
−

499

105
−

151

70
−

291

70
−

431

70

3499

210

3499

210

3499

210

1742

105

1637

105

1532

105

67

210
−

353

210
−

563

210

19 −
2809

240

2569

240
−

437

240
−

437

240
−

917

240
−

53

60
−

293

60
−

413

60

741

40

661

40

661

40

4031

240

3791

240

3551

240

109

120
−

131

120
−

251

120

20 −
2773

240

2533

240
−

289

240
−

529

240
−

1009

240
−

27

20
−

87

20
−

127

20

2131

120

2011

120

2011

120

4067

240

3827

240

3587

240

73

120
−

167

120
−

287

120

21 −
2737

240

2497

240
−

47

80
−

207

80
−

367

80
−

109

60
−

229

60
−

349

60

2039

120

2039

120

2039

120

4103

240

3863

240

3623

240

37

120
−

203

120
−

323

120

22 −
1121

90

1031

90
−

302

135
−

302

135
−

572

135
−

329

270
−

1409

270
−

1949

270

5587

270

5047

270

5047

270

857

45

812

45

767

45

37

90
−

143

90
−

233

90

23 −
1109

90

1019

90
−

218

135
−

353

135
−

623

135
−

461

270
−

1271

270
−

1811

270

5383

270

5113

270

5113

270

863

45

818

45

773

45

13

90
−

167

90
−

257

90

24 −
1097

90

1007

90
−

134

135
−

404

135
−

674

135
−

593

270
−

1133

270
−

1673

270

5179

270

5179

270

5179

270

869

45

824

45

779

45
−

11

90
−

191

90
−

281

90

Table 7: The numerical results for the X-charge assignments of Case II which allow no
further matter to be introduced. These 24 models are obtained from the 504 distinct sets
of Table 4.
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# ∆L
21

∆L
31

3ζ + p ∆H x n y spectrum
max.

denom.
kC ∆N

1
∆N

2
∆N

3
gX comments

1 0 0 −1 26 0 8 −1 inv. & nor. hier. 210 2 −4 −9 −9 0.0100

2 0 0 −1 26 0 8 0 inv. & nor. hier. 210 2 −4 −9 −9 0.0100 CKM

3 0 0 −1 26 0 8 1 inv. & nor.hier. 210 2 −4 −9 −9 0.0100

4 0 −1 −2 25 0 7 −1 nor. hier. 210 2 −2 −8 −8 0.0107 CHOOZ

5 0 −1 −2 25 0 7 0 nor. hier. 210 2 −2 −8 −8 0.0108 CHOOZ, CKM

6 0 −1 −2 25 0 7 1 nor. hier. 6 2 −2 −8 −8 0.0108 CHOOZ, denom.

7 0 −1 −2 27 0 8 −1 nor. hier. 30 2 −6 −9 −9 0.0096 CHOOZ, denom.

8 0 −1 −2 27 0 8 0 nor. hier. 210 2 −6 −9 −9 0.0096 CHOOZ, CKM

9 0 −1 −2 27 0 8 1 nor. hier. 42 2 −6 −9 −9 0.0096 CHOOZ, denom.

10 0 −1 −2 30 2 9 −1 nor. hier. 270 2 −1 −10 −10 0.0086 CHOOZ

11 0 −1 −2 30 2 9 0 nor. hier. 270 2 −1 −10 −10 0.0086 CHOOZ, CKM

12 0 −1 −2 30 2 9 1 nor. hier. 270 2 −1 −10 −10 0.0086 CHOOZ

13 −1 −2 −4 26 0 7 −1 nor. hier. 210 2 −3 −8 −8 0.0105 CHOOZ

14 −1 −2 −4 26 0 7 0 nor. hier. 210 2 −3 −8 −8 0.0105 CHOOZ, CKM

15 −1 −2 −4 26 0 7 1 nor. hier. 210 2 −3 −8 −8 0.0105 CHOOZ

16 −1 −2 −4 28 0 8 −1 nor. hier. 210 2 −7 −9 −9 0.0094 CHOOZ

17 −1 −2 −4 28 0 8 0 nor. hier. 210 2 −7 −9 −9 0.0094 CHOOZ, CKM

18 −1 −2 −4 28 0 8 1 nor. hier. 210 2 −7 −9 −9 0.0094 CHOOZ

19 −1 −2 −4 28 1 8 −1 nor. hier. 240 2 −1 −9 −9 0.0096 CHOOZ

20 −1 −2 −4 28 1 8 0 nor. hier. 240 2 −1 −9 −9 0.0097 CHOOZ, CKM

21 −1 −2 −4 28 1 8 1 nor. hier. 240 2 −1 −9 −9 0.0097 CHOOZ

22 −1 −2 −4 31 2 9 −1 nor. hier. 270 2 −2 −10 −10 0.0085 CHOOZ

23 −1 −2 −4 31 2 9 0 nor. hier. 270 2 −2 −10 −10 0.0085 CHOOZ, CKM

24 −1 −2 −4 31 2 9 1 nor. hier. 270 2 −2 −10 −10 0.0085 CHOOZ

Table 8: The features of the X-charge assignments in Table 7 (Case II). In the comments
we state the reason for preferring individual cases: “CKM” refers to a nice CKM matrix,
“CHOOZ” to a naturally small CHOOZ angle (|∆L

31| = 1, 2), and “denom.” labels models
where the X-charges have a maximal denominator ≤ 42.
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